标签:面试经验
如今,数据科学可以说是一个十分火爆的领域,我们可以看到数据科学在各行各业都得到了广泛的应用。虽然数据科学在近几年发展得如此迅猛,但是数据科学的核心技术其实早在很久以前就已经提出来了。比如数据挖掘、Hadoop、深度学习、神经网络、数据可视化、强化学习和云计算等等技术都是推动数据科学发展进程的核心手段...
在一个页面中,往往含有多个指向其他页面的链接,这些链接中只有一部分是指向主题相关网页的,或根据网页的链接锚文本表明其具有较高重要性。但是,在PageRank和HITS算法中,没有对这些链接作区分,因此常常给网页分析带来广告等噪声链接的干扰。在网页块级别(Block level)进行链接分析的算法的基...
大数据与高校意识形态工作生活化载体的多样性相契合。进入大数据时代,各种信息相互融合,意识形态传播渠道极大丰富,意识形态工作生活化的载体不断创新。大数据成为传统媒体与新兴媒体融合的助推器,媒体融合发展趋势为创新高校意识形态工作生活化载体提供了新机遇。在纸质媒体时代,意识形态教育载体单一,信息传播载体为...
“云”实质上就是一个网络,狭义上讲,云计算就是一种提供资源的网络,使用者可以随时获取“云”上的资源,按需求量使用,并且可以看成是无限扩展的,只要按使用量付费就可以,“云”就像自来水厂一样,我们可以随时接水,并且不限量,按照自己家的用水量,付费给自来水厂就可以。从广义上说,云计算是与信息技术、软件、互...
数据库系统,也称 数据库管理系统(DBMS),由一组内部相关的数据,称作数据库,和一组管理和存取数据的软件程序组成。软件程序涉及如下机制:数据库结构定义,数据存储,并行、共享或分布的数据访问,面对系统瘫痪或未授权的访问,确保数据的一致性和安全性。关系数据库是 表的集合,每个表都赋予一个唯一的名字。每...
学术界对元宇宙也有不同界定。北京大学新闻与传播学院陈刚和董浩宇认为,“元宇宙是利用科技手段进行链接与创造的,与现实世界映射与交互的虚拟世界,具备新型社会体系的数字生活空间”。清华大学新闻学院沈阳指出,元宇宙是一个理念和概念;元宇宙仍是一个不断发展、演变的概念,不同参与者以自己的方式不断丰富着它的含义...
编码在认知上是解释传入的刺激的一种基本知觉的过程。技术上来说,这是一个复杂的、多阶段的转换过程,从较为客观的感觉输入(例如光、声)到主观上有意义的体验。字符编码是一套法则,使用该法则能够对自然语言的字符的一个集合(如字母表或音节表),与其他东西的一个集合(如号码或电脉冲)进行配对。文字编码使用一种标...
事务数据库由一个文件组成,其中每个记录代表一个事务。通常,一个事务包含一个唯一的事务标识号(trans_ID),和一个组成事务的项的列表(如,在商店购买的商品)。事务数据库可能有一些与之相关联的附加表,包含关于销售的其它信息,如事务的日期、顾客的 ID 号、销售者的 ID 号、销售分店,等等。假定你...
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人...
元数据被定义为:描述数据的数据,对数据及信息资源的描述性信息。元数据是描述其它数据的数据,或者说是用于提供某种资源的有关信息的结构数据。元数据是描述信息资源或数据等对象的数据,其使用目的在于:识别资源;评价资源;追踪资源在使用过程中的变化;实现简单高效地管理大量网络化数据;实现信息资源的有效发现、查...
空间数据库包含涉及空间的信息。这种数据库包括地理(地图)数据库、VLSI 芯片设计数据库、医疗和卫星图象数据库。空间数据可能以 光栅格式提供,由 n 维位图或象素图构成。例如,一个 2维卫星图象可以用光栅数据表示,每个象素存放一个给定区域的降雨量。地图也可以用 向量格式提供,其中,路、桥、建筑物和湖...
指数化思维,是指将衡量一个问题的多个因素分别量化后,组合成一个综合指数(降维),来持续追踪的方式。把这个放在最后讨论,目的就是强调它的重要性。前文已经说过,许多管理者面临的问题是“数据太多,可用的太少”,这就需要“降维”了,即要把多个指标压缩为单个指标。指数化的好处非常明显,一是减少了指标,使得管理...
数据挖掘是人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,作出归纳性的推理,从中挖掘出潜在的模...
时间数据库和时间序列数据库都存放与时间有关的数据。 时间数据库通常存放包含时间相关属性的数据。这些属性可能涉及若干时间标签,每个都具有不同的语义。 时间序列数据库存放随时间变化的值序列,如,收集的股票交易数据。数据挖掘技术可以用来发现数据库中对象演变特征或对象变化趋势。这些信息对于决策和规划是有用的...
逻辑树又称为演绎树或分解树,英文叫做Issue Tree,是一种以树状图形来分析存在的问题及其相互关系的方法。首先将一个已知问题当成树干,然后开始思考这个问题与哪些相关问题或子任务有关,每想到一点就给这个问题(也就是树干)加一个“树枝”,并标明这个“树枝”代表什么问题,一个大的“树枝”上还可以有小的...
数据流通常被定义为不断到达的元组所构成的无限数据集,或是一个连续、无界、顺序、时变的元组序列,对它的应用大多是监控型的,即持续运行在连续数据流上的连续查询。在传统数据库系统中,其处理的对象是持久的关系,接受的是即席的查询,查询计划是固定的,查询执行模式是随机访问数据库并且可以对其多遍扫描,应用没有实...
数据区分是将目标类对象的一般特性与一个或多个对比类对象的一般特性比较。目标类和对比类由用户指定,而对应的数据通过数据库查询提取。例如,你可能希望将上一年销售增加 10%的软件产品与同一时期销售至少下降 30%的那些进行比较。用于数据区分的方法与用于数据特征的那些类似。“区分描述如何输出?”输出的形式...
对比思维也是运营最常见的一种思维方法纵向对比:自己和自己比,包括环比(和上一期自己比)、同比(和去年同期自己比)横向对比:自己和他人比,比如IOS和安卓的销售额,女装和男装的销售额等等对比思维经常被错误应用,把不可比的数据放在一起对比,比如A品牌20年同比增长42%,B品牌20年同比增长仅28%,说...
流处理是一种重要的大数据处理手段,其主要特点是其处理的数据是源源不断且实时到来的。分布式流处理是一种面向动态数据的细粒度处理模式,基于分布式内存,对不断产生的动态数据进行处理。其对数据处理的快速,高效,低延迟等特性,在大数据处理中发挥越来越重要的作用。分布式流处理是指基于分布式技术对流数据进行动态处...
星形模式:最常见的模型范例星形模式;其中数据仓库包括(1)一个大的、包含大批数据、不含冗余的中心表( 事实表);(2)一组小的附属表( 维表),每维一个。这种模式图很象星星爆发,维表围绕中心表显示在射线上。在星形模式中,每维只用一个表表示,每个表包含一组属性。例如,location 维表包含属性集{...